La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
- Centro, O
- Vértices, A y A
- Distancia entre los vértices
- Distancia entre los focos
La ecuación de una hipérbola con centro (0, 0), es:
Ecuaciones de la hipérbola
Ecuaciones en coordenadas cartesianas:Ecuación de una hipérbola con centro en el origen de coordenadas y ecuación de la hipérbola en su forma compleja.
Ecuación de una hipérbola con centro en el punto
Ejemplos:
a)
CARACTERISTICAS DE LA HIPERBOLA
1... La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real.
2... Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
3... La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a.
4... La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
5... La hipérbola, como la elipse, se puede definir como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a las circunferencias focales del otro foco.
6... Las asíntotas de la hipérbola son las tangentes a la curva en los puntos del infinito. Estas asíntotas son simétricas respecto de los ejes y pasan por el centro de la curva.
2... Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.
3... La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a.
4... La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.
5... La hipérbola, como la elipse, se puede definir como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a las circunferencias focales del otro foco.
6... Las asíntotas de la hipérbola son las tangentes a la curva en los puntos del infinito. Estas asíntotas son simétricas respecto de los ejes y pasan por el centro de la curva.
Ecuacion y Grafica de una Hiperbola