HIPERBOLA

La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
  • Centro, O
  • Vértices, A y A
  • Distancia entre los vértices
  • Distancia entre los focos
La ecuación de una hipérbola con centro (0, 0), es:
 
 

Ecuaciones de la hipérbola
Ecuaciones en coordenadas cartesianas:Ecuación de una hipérbola con centro en el origen de coordenadas y ecuación de la hipérbola en su forma compleja.





Ecuación de una hipérbola con centro en el punto





Ejemplos:
a)


b)


CARACTERISTICAS DE LA HIPERBOLA
1... La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante e igual a 2a = AB, la longitud del eje real.

2... Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal se representa por 2c.
Entre a, b y c existe la relación c2 = a2 + b2.

3... La hipérbola es simétrica respecto de los dos ejes y, por lo tanto respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por definición se verifica: r - r' = 2a.

4... La circunferencia principal de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. Las circunferencias focales tienen por centro los focos y radio a.

5... La hipérbola, como la elipse, se puede definir como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a las circunferencias focales del otro foco.

6... Las asíntotas de la hipérbola son las tangentes a la curva en los puntos del infinito. Estas asíntotas son simétricas respecto de los ejes y pasan por el centro de la curva.


Ecuacion y Grafica de una Hiperbola